爱因斯坦的狭义相对论建立过程与《科学的假设》中思想的契合之处。 - 爱问答

(爱问答)

爱因斯坦的狭义相对论建立过程与《科学的假设》中思想的契合之处。

1、 谈一下爱因斯坦在创立狭义相对论的过程中,哪些具体思维过程和作法是与彭加勒在《科学与假设》第9章“物理学中的假设”有关自然界的统一性和第三种假设(“约定论”)的观点相契合的。


狭义相对论是由爱因斯坦在洛仑兹和庞加莱等人的工作基础上创立的时空理论,是对牛顿时空观的拓展和修正。 爱因斯坦以光速不变原理出发,建立了新的时空观。进一步,闵科夫斯基为了狭义相对论提供了严格的数学基础,从而将该理论纳入到带有闵科夫斯基度量的四维空间之几何结构中。

 

1实验基础

牛顿力学是狭义相对论在低速况下的近似。伽利略变换与电磁学理论的不自洽。到19世纪末,以麦克斯韦方程组为核心的经典电磁理论的正确性已被大量实验所证实,但麦克斯韦方程组在经典力学的伽利略变换下不具有协变性。而经典力学中的相对性原理则要求一切物理规律在伽利略变换下都具有协变性。在这样的背景下,才有了狭义相对论的产生。

2诞生

19世纪末期物理学家开尔文爵士在一次国际会议上讲到“物理学大厦已经建成,以后的工作仅仅是内部的装修和粉刷”。但是,他话锋一转又说:“大厦上空还漂浮着两朵‘乌云’,麦克尔逊-莫雷试验结果和黑体辐射的紫外灾难。”正是为了解决上述两问题,物理学发生了一场深刻的革命导致了相对论和量子力学的诞生。

 

早在电动力学麦克斯韦方程建立之日,人们就发现它没有涉及参照系问题。人们利用经典力学的时空理论讨论电动力学方程,发现在伽利略变换下麦克斯韦方程及其导出的方程(如亥姆霍兹,达朗贝尔等方程)在不同惯性系下形式不同,这一现象应当怎样解释?经过几十年的探索,在1905年终于由爱因斯坦创建了狭义相对论。

 

狭义相对论公式

3爱因斯坦 

狭义相对论

爱因斯坦意识到伽利略变换实际上是牛顿经典时空观的体现,如果承认“真空光速独立于参考系”这一实验事实为基本原理,可以建立起一种新的时空观(相对论时空观)。在这一时空观下,由相对性原理即可导出洛伦兹变换。1905年,爱因斯坦发表论文《论动体的电动力学》,建立狭义相对论,成功描述了在亚光速领域宏观物体的运动。

4对参照系

在麦氏预言电磁波之后,多数科学家就认为电磁波传播需要媒质(介质)。这种介质称为“以太”。“以太”应具有以下基本属性:

1.充满宇宙,透明而密度很小(电磁弥散空间,无孔不入);

2.具有高弹性。能在平衡位置作振动,特别是电磁波一般为横波,以太应是一种固体( G是切变模量ρ是介质密度);

3.以太只在牛顿绝对时空中静止不动,即在特殊参照系中静止。

在以太中静止的物体为绝对静止,相对以太运动的物体为绝对运动。引入“以太”后人们认为麦氏方程只对与“以太”固连的绝对参照系成立,那么可以通过实验来确定一个惯性系相对以太的绝对速度。一般认为地球不是绝对参照系。可以假定以太与太阳固连,这样应当在地球上做实验来确定地球本身相对以太的绝对速度,即地球相对太阳的速度。为此,人们设计了许多精确的实验(包括爱因斯坦也曾设计过这方面的实验),其中最著名、最有意义的实验是迈克尔逊—莫雷实验(1887年)。

爱因斯坦有机会读了洛伦兹在1895年发表的论文,他讨论并完满解决了u/c的高次项(u为运动物体的速度,c为光速)。然后爱因斯坦试图假定洛伦兹电子方程在真空参照系中有效,也应该在运动物体的参照系中有效,去讲座菲索实验。在那时,爱因斯坦坚信,麦克斯韦-洛伦兹的电动力学方程是正确的。进而这些议程在运动物体参照系中有效的假设导致了光速不变的概念。然而这与经典力学中速度相加原理相违背。

为什么这两个概念互相矛盾。爱因斯坦为了解释它,花了差不多一年的时间试图去修改洛伦兹理论。一个偶然的机会。他在一个朋友的帮助下解决了这一问题。爱因斯坦去问他并交谈讨论了这个困难问题的各个方面,突然爱因斯坦找到了解决所有的困难的办法。他说:“我在五周时间里完成了狭义相对论原理。”

爱因斯坦的理论否定了以太概念,肯定了电磁场是一种独立的、物质存在的特殊形式,并对空间、时间的概念进行了深刻的分析,从而建立了新的时空关系。

 

6意义

狭义相对论建立以后,对物理学起到了巨大的推动作用。并且深入到量子力学的范围,成为研究高速粒子不可缺少的理论,而且取得了丰硕的成果。然而在成功的背后,却有两个遗留下的原则性问题没有解决。第一个是惯性系所引起的困难。抛弃了绝对时空后,惯性系成了无法定义的概念。我们可以说惯性系是惯性定律在其中成立的参考系。惯性定律的实质是一个不受外力的物体保持静止或匀速直线运动的状态。然而“不受外力”是什么意思?只能说,不受外力是指一个物体能在惯性系中静止或匀速直线运动。这样,惯性系的定义就陷入了逻辑循环,这样的定义是无用的。

 

我们总能找到非常近似的惯性系,但宇宙中却不存在真正的惯性系,整个理论如同建筑在沙滩上一般。第二个是万有引力引起的困难。万有引力定律与绝对时空紧密相连,必须修正,但将其修改为洛伦兹变换下形势不变的任何企图都失败了,万有引力无法纳入狭义相对论的框架。当时物理界只发现了万有引力和电磁力两种力,其中一种就冒出来捣乱,况当然不会令人满意。

爱因斯坦只用了几个星期就建立起了狭义相对论,然而为解决这两个困难,建立起广义相对论却用了整整十年时间。为解决第一个问题,爱因斯坦干脆取消了惯性系在理论中的特殊地位,把相对性原理推广到非惯性系。因此第一个问题转化为非惯性系的时空结构问题。在非惯性系中遇到的第一只拦路虎就是惯性力。在深入研究了惯性力后,提出了著名的等性原理,发现参考系问题有可能和引力问题一并解决。几经曲折,爱因斯坦终于建立了完整的广义相对论。广义相对论让所有物理学家大吃一惊,引力远比想象中的复杂的多。至今为止爱因斯坦的场方程也只得到了为数不多的几个确定解。它那优美的数学形式至今令物理学家们叹为观止。就在广义相对论取得巨大成就的同时,由哥本哈根学派创立并发展的量子力学也取得了重大突破。然而物理学家们很快发现,两大理论并不相容,至少有一个需要修改。于是引发了那场著名的论战:爱因斯坦VS哥本哈根学派。

 

直到现在争论还没有停止,只是越来越多的物理学家更倾向量子理论。爱因斯坦为解决这一问题耗费了后半生三十年光阴却一无所获。不过他的工作为物理学家们指明了方向:建立包含四种作用力的超统一理论。目前学术界公认的最有希望的候选者是超弦理论与超膜理论。

7论点

 

爱因斯坦发表了狭义相对论的论文《论运动物体的电动力学》。关于狭义相对论的基本原理,他写道:“下面的考虑是以相对性原理和光速不变原理为依据的,这两条原理我们规定如下:

1.物理体系的状态据以变化的定律,同描述这些状态变化时所参照的坐标系究竟是用两个在互相匀速移动着的坐标系中的哪一个并无关系。

 

2.任何光线在“静止的”坐标系中都是以确定的速度c运动着,不管这道光线是由静止的还是运动的物体发射出来的。”

其中第一条就是相对性原理,第二条是光速不变性(人为假定的)。

整个狭义相对论就建筑在这两条基本原理上。

 

原理解释

物质在相互作用中作永恒的运动,没有不运动的物质,也没有无物质的运动,由于物质是在相互联系,相互作用中运动的,因此,必须在物质的相互关系中描述运动,而不可能孤立的描述运动。也就是说,运动必须有一个参考物,即必须在某一个参考系下描述运动。

 

狭义相对论

伽利略曾经指出,运动的船与静止的船上的运动不可区分,也就是说,当你在封闭的船舱里,与外界完全隔绝,那么即使你拥有最发达的头脑,最先进的仪器,也无从感知你的船是匀速运动,还是静止。更无从感知速度的大小,因为没有参考。比如,不知道整个宇宙的整体运动状态,因为宇宙是封闭的。爱因斯坦将其引用,作为狭义相对论的第一个基本原理:狭义相对性原理。其内容是:惯性系之间完全等价,不可区分。

著名的麦克尔逊--莫雷实验彻底否定了光的以太学说,得出了光与参考系无关的结论。也就是说,无论你站在地上,还是站在飞奔的火车上,测得的光速都是一样的。这就是狭义相对论的第二个基本原理,光速不变原理。

由这两条基本原理可以直接推导出相对论的坐标变换式,速度变换式等所有的狭义相对论内容。比如速度变换,正因为光的这一独特性质,因此被选为四维时空的唯一标尺。

8实验

为解决这一矛盾,物理学家提出了“以太假说”,即放弃相对性原理,认为麦克斯韦方程组只对一个绝对参考系(以太)成立。根据这一假说,由麦克斯韦方程组计算得到的真空光速是相对于绝对参考系(以太)的速度;在相对于“以太”运动的参考系中,光速具有不同的数值。

实验的结果——零结果

但斐索实验和迈克尔孙-莫雷实验表明光速与参考系的运动无关。

10坐标变换

洛仑兹变换是描述狭义相对论空间中各参考系间关系的变换。它最早由洛仑兹从以太说推出,用以解决经典力学与经典电磁学间的矛盾(即迈克尔孙-莫雷实验的零结果)。后被爱因斯坦用于狭义相对论。

另一种产生说法:马赫和休谟的哲学对爱因斯坦影响很大。马赫认为时间和空间的量度与物质运动有关。时空的观念是通过经验形成的。绝对时空无论依据什么经验也不能把握。休谟更具体的说:空间和广延不是别的,而是按一定次序分布的可见的对象充满空间。而时间总是由能变化的对象的可觉察的变化而发现的。1905年爱因斯坦指出,迈克尔逊和莫雷实验实际上说明关于“以太”的整个概念是多余的,光速是不变的。而牛顿的绝对时空观念是错误的。不存在绝对静止的参照物,时间测量也是随参照系不同而不同的。他用光速不变和相对性原理提出了洛仑兹变换。创立了狭义相对论。

狭义相对论是建立在四维时空观上的一个理论,因此要弄清相对论的内容,要先对相对论的时空观有个大体了解。在数学上有各种多维空间,但目前为止,我们认识的物理世界只是四维,即三维空间加一维时间。

 

四维时空是构成真实世界的最低维度,我们的世界恰好是四维,至于高维真实空间,我们还无法感知。我说过一个例子,一把尺子在三维空间里(不含时间)转动,其长度不变,但旋转它时,它的各坐标值均发生了变化,且坐标之间是有联系的。四维时空的意义就是时间是第四维坐标,它与空间坐标是有联系的,也就是说时空是统一的,不可分割的整体,它们是一种“此消彼长”的关系。

 

四维时空不仅限于此,由质能关系知,质量和能量实际是一回事,质量(或能量)并不是独立的,而是与运动状态相关的,比如速度越大,质量越大。在四维时空里,质量(或能量)实际是四维动量的第四维分量,动量是描述物质运动的量,因此质量与运动状态有关就是理所当然的了。

 

在四维时空里,动量和能量实现了统一,称为能量动量四矢。另外在四维时空里还定义了四维速度,四维加速度,四维力,电磁场方程组的四维形式等。值得一提的是,电磁场方程组的四维形式更加完美,完全统一了电和磁,电场和磁场用一个统一的电磁场张量来描述。四维时空的物理定律比三维定律要完美的多,这说明我们的世界的确是四维的。可以说至少它比牛顿力学要完美的多。至少由它的完美性,我们不能对它妄加怀疑。

相对论中,时间与空间构成了一个不可分割的整体——四维时空,能量与动量也构成了一个不可分割的整体——四维动量。这说明自然界一些看似毫不相干的量之间可能存在深刻的联系。在今后论及广义相对论时我们还会看到,时空与能量动量四矢之间也存在着深刻的联系。

 

现代的语言来说,萨尔维阿蒂的大船就是一种所谓惯性参考系。就是说,以不同的匀速运动着而又不忽左忽右摆动的船都是惯性参考系。在一个惯性系中能看到的种种现象,在另一个惯性参考系中必定也能无任何差别地看到。亦即,所有惯性参考系都是平权的、等价的。我们不可能判断哪个惯性参考系是处于绝对静止状态,哪一个又是绝对运动的。

伽利略相对性原理不仅从根本上否定了地静派对地动说的非难,而且也否定了绝对空间观念(至少在惯性运动范围内)。所以,在从经典力学到相对论的过渡中,许多经典力学的观念都要加以改变,唯独伽利略相对性原理却不仅不需要加以任何修正,而且成了狭义相对论的两条基本原理之一。

11两条原理

相对性原理

物理体系的状态据以变化的定律

光速不变性原理

任何光线在“静止的”坐标系中都是以确定的速度c运动着,不管这道光线是由静止的还是运动的物体发射出来的。”

爱因斯坦的哲学观念是,自然界应当是和谐而简单的。的确,他的理论常有一种引人注目的特色:出于简单而归于深奥。狭义相对论就是具有这种特色的一个体系。狭义相对论的两条基本原理似乎是并不难接受的“简单事实”,然而它们的推论却根本地改变了牛顿以来物理学的根基。

后面我们将开始这种推论。

12相对论

相对论是20世纪物理学史上最重大的成就之一,它包括狭义相对论和广义相对论两个部分,狭义相对论颠覆了从牛顿以来形成的时空概念,提示了时间与空间的统一性和相对性,建立了新的时空观。广义相对论把相对原理推广到非惯性参照系和弯曲空间,从而建立了新的引力理论。在相对论的建立过程中,爱因斯坦起了主要的作用。

提起狭义相对论,很多人马上就想到钟表慢走和尺子缩短现象。许多科学幻想作品用它作题材,描写一个人坐火箭遨游太空回来以后,发现自己还很年轻,而孙子已经变成了老头。其实,钟表慢走和尺子缩短只是狭义相对论的几个结论之一,它是指物体高速运动的时候,运动物体上的时钟变慢了,尺子变短了。钟表慢走和尺子缩短现象就是时间和空间随物质运动而变化的结果。狭义相对论还有一个质量随运动速度而增加的结论。实验中发现,高速运动的电子的质量比静止的电子的质量大。

 

狭义相对论最重要的结论是使质量守恒失去了独立性。它和能量守恒原理融合在一起,质量和能量可以互相转化。如果物质质量是M,光速是C,它所含有的能量是E,那么E=MC^2。这个公式只说明质量是M的物体所蕴藏的全部能量,并不等于都可以释放出来,在核反应中消失的质量就按这个公式转化成能量释放出来。按这个公式,1克质量相当于9X10^13焦耳的能量。这个质能转化和守恒原理就是利用原子能的理论基础。

在狭义相对论中,虽然出现了用牛顿力学观点完全不能理解的结论:空间和时间随物质运动而变化,质量随运动而变化,质量和能量的相互转化,但是狭义相对论并不是完全和牛顿力学割裂的,当运动速度远低于光速的时候,狭义相对论的结论和牛顿力学就不会有什么区别。

几十年来的历史发展证明,狭义相对论大大推动了科学进程,成为现代物理学的基本理论之一。

爱因斯坦认为:当一个物体的运动速度接近于光速时,物体的质量将增加,时钟会变慢,尺子会变短。

公式为

 

这里M是改变后的质量,m是改变前的质量,v是运动的速度,c是光速。

13效应

根据狭义相对性原理,惯性系是完全等价的,因此,在同一个惯性系中,存在统一的时间,称为同时性.

而相对论证明,在不同的惯性系中,却没有统一的同时性,也就是两个事件(时空点)在一个惯性系内同时,在另一个惯性系内就可能不同时,这就是同时的相对性,在惯性系中,同一物理过程的时间进程是完全相同的,如果用同一物理过程来度量时间,就可在整个惯性系中得到统一的时间。在今后的广义相对论中可以知道,非惯性系中,时空是不均匀的,也就是说,在同一非惯性系中,没有统一的时间,因此不能建立统一的同时性。

相对论导出了不同惯性系之间时间进度的关系,发现运动的惯性系时间进度慢,这就是所谓的钟慢效应。可以通俗的理解为,运动的钟比静止的钟走得慢,而且,运动速度越快,钟走的越慢,接近光速时,钟就几乎停止了。

尺子的长度就是在一惯性系中"同时"得到的两个端点的坐标值的差。由于"同时"的相对性,不同惯性系中测量的长度也不同。相对论证明,在尺子长度方向上运动的尺子比静止的尺子短,这就是所谓的尺缩效应,当速度接近光速时,尺子缩成一个点。

由以上陈述可知,钟慢和尺缩的原理就是时间进度有相对性。也就是说,时间进度与参考系有关。这就从根本上否定了牛顿的绝对时空观,相对论认为,绝对时间是不存在的,然而时间仍是个客观量。比如在下期将讨论的双生子理想实验中,哥哥乘飞船回来后是15岁,弟弟可能已经是45岁了,说明时间是相对的,但哥哥的确是活了15年,弟弟也的确认为自己活了45年,这是与参考系无关的,时间又是"绝对的"。这说明,不论物体运动状态如何,它本身所经历的时间是一个客观量,是绝对的,这称为固有时。也就是说,无论你以什么形式运动,你都认为你喝咖啡的速度很正常,你的生活规律都没有被打乱,但别人可能看到你喝咖啡用了100年,而从放下杯子到寿终正寝只用了一秒钟。

 

时钟佯谬或双生子佯谬

相对论诞生后,曾经有一个令人极感兴趣的疑难问题---双生子佯谬。一对双生子A和B,A在地球上,B乘火箭去做星际旅行,经过漫长岁月返回地球。

爱因斯坦由相对论断言,二人经历的时间不同,重逢时B将比A年轻。许多人有疑问,认为A看B在运动,B看A也在运动,为什么不能是A比B年轻呢?

 

由于地球可近似为惯性系,B要经历加速与减速过程,是变加速运动参考系,真正讨论起来非常复杂,因此这个爱因斯坦早已讨论清楚的问题被许多人误认为相对论是自相矛盾的理论。如果用时空图和世界线的概念讨论此问题就简便多了,只是要用到许多数学知识和公式。在此只是用语言来描述一种最简单的情形。我们的结论是,无论在哪个参考系中,B都比A年轻。

 

相对论要求物理定律要在坐标变换(洛伦兹变化)下保持不变。经典电磁理论可以不加修改而纳入相对论框架,而牛顿力学只在伽利略变换中形势不变,在洛伦兹变换下原本简洁的形式变得极为复杂。因此经典力学与要进行修改,修改后的力学体系在洛伦兹变换下形势不变,称为相对论力学。

14公式推导

单位符号单位符号

坐标 m (x,y,z) 力 N F(f)

时间 s t(T) 质量 kg m(M)

位移m r 动量 kg*m/s p(P)

速度 m/s v(u) 能量 J E

加速度 m/s^2 a 冲量 N*s I

长度 m l(L) 动能J Ek

路程 m s(S) 势能 J Ep

角速度 rad/s ω 力矩 N*m M

角加速度 rad/s^2 α 功率 W P

牛顿力学

1.质点运动学基本公式:(1)v=dr/dt,r=r0+∫vdt

2.a=dv/dt,v=v0+∫adt

(注:两式中左式为微分形式,右式为积分形式)

当v不变时,(1)表示匀速直线运动。

当a不变时,(2)表示匀变速直线运动。

只要知道质点的运动方程r=r(t),它的一切运动规律就可知了。

2.质点动力学:

1.牛顿第一定律:不受力的物体总是保持静止或者匀速直线运动状态,直到有外力迫使它改变这种状态。

2.牛顿第二定律:物体加速度与合外力成正比与质量成反比。

F=ma=mdv/dt=dp/dt

3.牛顿第三定律:作用力与反作用力等大反向作用在同一直线上。

4.万有引力定律:两质点间作用力与质量乘积成正比,与距离平方成反比。

F=GMm/r^2,G=6.67259*10^(-11)m^3/(kg*s^2) G为引力常量 由英国化学家、物理学家卡文迪许测得。

动量定理:I=∫Fdt=p2-p1(合外力的冲量等于动量的变化)

动量守恒:合外力为零时,系统动量保持不变。

动能定理:W=∫Fds=Ek2-Ek1(合外力的功等于动能的变化)

机械能守恒:只有重力或弹力做功时,Ek1+Ep1=Ek2+Ep2

(注:牛顿力学的核心是牛顿第二定律:F=ma,它是运动学与动力学的桥梁,我们的目的是知道物体的运动规律,即求解运动方程r=r(t),若知受力情况,根据牛顿第二定律可得a,再根据运动学基本公式求之。同样,若知运动方程r=r(t),可根据运动学基本公式求a,再由牛顿第二定律可知物体的受力情况。)

狭义相对论力学

(注:γ=1/sqr(1-u^2/c^2),β=u/c,u为惯性系速度。)

1.基本原理:

(1)相对性原理:物理定律在所有惯性系中都具有相同的数学形式。

(2)光速不变原理:真空中的光速是与惯性系无关的常数。

(此处先给出公式再给出推导)

2.洛仑兹坐标变换(沿X轴方向):

X=γ(x-ut)

Y=y

Z=z

T=γ(t-ux/c^2)

3.速度变换:

V(x)=(v(x)-u)/(1-v(x)u/c^2)

V(y)=v(y)/(γ(1-v(x)u/c^2))

V(z)=v(z)/(γ(1-v(x)u/c^2))

4.尺缩效应:

△L=△l/γ或dL=dl/γ

5.钟慢效应:

△t=γ△τ或dt=dτ/γ

6.光的多普勒效应:

ν(a)=sqr((1-β)/(1+β))ν(b)

(光源与探测器在一条直线上运动。)

7.动量表达式:

P=Mv=γmv,即M=γm

8.相对论力学基本方程:

F=dP/dt

9.质能方程:

E=Mc^2

10.能量动量关系:

E^2=(E0)^2+P^2c^2

(注:在此用两种方法推导,一种在三维空间内进行,一种在四维时空中证明,实际上他们是等价的。)


相关标签:爱因斯坦

下一篇:地形与地基承载力

上一篇:2019国家公务员面试的测评要素都有哪些?(昆明地区)

热门标签:
英语 谜语 作文 数学 公式 语文 物理 化学 工艺 java c语言 实验 方程 金属 分子 数据库 硫酸 酒精 运算 石油 vc 世界大战 php 化合物 mysql
最新更新:
电学的一个小问题 为什么打点计时器只能粗略瞬时速度 lookdownupon用法 中专都考不上大学有必要复读一年吗? 如图,已知∠B=∠DEF,AB=DE,请添加一个条件使△ABC≌△DEF,则需添加的条件是__________. 求曲线y=2x^2和直线y=2的所围图形的面积 夜上受降城闻笛是哪句 这个怎么填数字? 小明家下五层楼是5楼,那么小明家上五层楼是几层楼? 填空题,这个题目是怎么算的呢…… 22335577()143中括号里填什么数字。 懂得人帮我看一下这个英文是啥意思??? 最小的物质单位是什么 怎么估算根号52000000 about的重读字母是哪里